Downloaded from rstb.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL |
OF SOCIETY

Molecular Modelling of Malaria Calmodulin Suggests that it is
not a Suitable Target for Novel Antimalarials

Kathryn J. H. Robson, Yasmine Gamble and K. Ravi Acharya

Phil. Trans. R. Soc. Lond. B 1993 340, 39-53
doi: 10.1098/rstb.1993.0047

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at the top
right-hand corner of the article or click here

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
(@)

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

This journal is © 1993 The Royal Society


http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;340/1291/39&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/340/1291/39.full.pdf
http://rstb.royalsocietypublishing.org/subscriptions
http://rstb.royalsocietypublishing.org/

THE ROYAL
SOCIETY

OF

Downloaded from rstb.royalsocietypublishing.org

Molecular modelling of malaria calmodulin suggests
that it is not a suitable target for novel antimalarials
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[Plates 1 and 2]

SUMMARY

The recent cloning and sequencing of many calmodulin genes permits alignment of DNA and protein
sequences, as well as structural comparison based on homology modelling. The crystal structure of
calmodulin places the four Ca?*-binding domains in a dumbbell-like configuration, with a large
hydrophobic cleft in each half of the molecule. Calmodulin from Plasmodium falciparum has a high level of
sequence identity (899%,) with its mammalian counterpart. However, a lower degree of sequence
conservation is observed among calmodulins from other lower eukaryotes. Potentially important
differences in calmodulin sequences involve amino acids with side-chains forming the hydrophobic clefts
as well as in the central helix; these differences could alter interactions with small hydrophobic molecules
such as chloroquine and with enzymes modulated by calmodulin. Our modelling studies suggest that
neither of the antimalarials examined (chloroquine and quinine) bind tightly to calmodulin. We
conclude that the differences between host and parasite calmodulins are insufficient to merit this protein
being chosen as a realistic target for antimalarial drug design. By contrast, our sequence comparisons
reveal that the fungal calmodulins are significantly divergent from those of higher eukaryotes suggesting

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

that at least in these species, calmodulin might be a target for novel antimycotic drugs.

1. INTRODUCTION

The human malaria parasite, Plasmodium falciparum, a
unicellular protozoan, is still a major cause of disease
in the developing world. A conservative estimate of
the number of malaria cases is 200 million. In Africa
alone it probably accounts for the deaths of a million
children a year. The resurgence of malaria as a
worldwide clinical problem is due both to a break-
down in vector control and to a rapid rise of drug
resistance by the parasite, notably to pyrimethamine
and chloroquine. Hence, novel antimalarials need to
be designed, preferably using rational approaches
based on the structural information of parasite pro-
teins which have functional significance.

The mechanism underlying resistance to pyrime-
thamine has been determined by the cloning and
sequencing of the dihydrofolate reductase-thymidylate
synthetase (DHFR-TS) gene from resistant and sensi-
tive isolates of P. falciparum. Resistance is associated
with point mutations; for example, the substitution of
asparagine for serine or threonine at position 108
(Peterson et al. 1988; Cowman et al. 1988; Snewin et
al. 1989). Different point mutations are linked with
resistance to proguanil (Foote et al. 1990g; Peterson el
al. 1990). All these mutations have occurred at sites
bordering the active site of the enzyme, which is also
the predicted binding site of the drug. It is probable
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that these mutations protect the parasite by altering
the affinity of the enzyme for its natural substrate and
for pyrimethamine.

Several hypotheses have been put forward (Krog-
stad et al. 1987; Warhurst 1988; Meshnick 1990) to
explain the mechanism for chloroquine resistance in
malaria. These include alterations in the expression
and gene copy number of the multidrug resistance
gene (Pfmdr-1) as well as a possible role for calmo-
dulin. Evidence for the presence of an ‘mdr type
phenomenon’ comes from the observation that
calcium antagonists such as verapamil can reverse
chloroquine resistance in vitro (Martin et al. 1987).
Two mdr-like genes have been cloned from P. falci-
parum (Wilson et al. 1989; Foote et al. 1989). The first,
Pfmdr-1, is located on chromosome 5 and shares
about 55%, homology with human mdr-1 (Foote et al.
1989). There are some data to suggest that this gene is
amplified or overexpressed in certain chloroquine
resistant lines (Foote et al. 1989; 19904). Wellems ¢ al.
(1990), who performed a genetic cross between chlor-
oquine-sensitive and chloroquine-resistant lines, have
not shown such a correlation. Pfmdr-2 has been
mapped to chromosome 14 and shows no correlation
with chloroquine resistance (Wellems et al. 1990).
Very recent genetic evidence has mapped chloroquine
resistance to a segment of chromosome 7 (Wellems et
al. 1991). The most convincing target for chloroquine
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is the haem polymerase (Slater & Cerami 1992).
This enzyme found in trophozoites, is responsible for
detoxifying the haem moiety, ferriprotoporphyrin IX,
produced from haemoglobin breakdown in the food
vacuole. Chloroquine resistance is unrelated to this
enzyme but probably due to transport processes which
maintain drug levels below those which would inhibit
the polymerase (Krogstad et al. 1987). It is not known
whether the action of chloroquine is only limited to
this haem polymerase.

The recent cloning and sequencing of the calmodu-
lin gene from P. falciparum (Robson & Jennings 1991)
has allowed us to see if this molecule could be used to
design novel antimalarials. Calmodulin is highly con-
served throughout evolution; the most amino acid
changes are found among the lower eukaryotes. It is a
small acidic protein (usually 148 amino acids long),
that belongs to a family of homologous proteins that
bind calcium through similar structural domains. The
three-dimensional crystal structure (Babu e al. 1988)
for mammalian calmodulin shows that the molecule is
dumbbell-shaped, the two lobes each containing two
Ca®*-binding domains, are connected by a flexible
central a-helix. When calmodulin binds Ca®*, a very
large hydrophobic cleft is formed in each half of the
molecule, and these probably represent the sites of
interaction of the many pharmacological agents
known to bind calmodulin e.g. chloroquine, as well as
the site of interaction of calmodulin with the wide
variety of enzymes which it regulates. This is sup-
ported by experimental evidence showing that calmo-
dulin binds two moles of trifluoperazine (Shimuzu
& Hatano 1983; Shimuzu et al. 1984), the protein
was originally purified using phenothiazine affinity
chromatography (Jamieson & Vanaman 1979) and
that trifluoperazine competitively inhibits calmodulin
acivation of guanylate cyclase (Nagao et al. 1981). We
have compared the amino acid sequences of known
calmodulins to establish evolutionary relationships
and performed model building studies based on the
known crystal structure of mammalian calmodulin to
understand the significance of amino acid sequence
changes in relationship to the hydrophobic clefts.

2. MATERIALS AND METHODS
(a) Sequence alignments

Calmodulin sequences were taken from the Swissprot
database (release 18 (5/91)), the EMBL update
(release 27 (5/91) and EMNEW. The alignments were
done using the ‘AMPS’ (alignment of multiple protein
sequences) package of computer programmes (Barton
& Sternberg 1987) and compared by the conventional
dynamic programming method of pairwise alignment
based on the algorithm of Needleman & Wunsch
(1970).

To perform these comparisons we have made
certain assumptions as some of the sequences have
been derived directly whereas others have not. The
early data came from protein sequencing. Wheat
‘calmodulin appears to have an extra amino acid
between residues 8 and 9 (Toda et al. 1985), barley
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calmodulin does not (Ling & Zielinski 1989). The
former is based on available protein sequence and the
latter is deduced from the DNA sequence. Conse-
quently, we have chosen to remove the extra ‘N’ from
wheat. Based on DNA sequence data, Saccharomyces
cerevisiae has lost an amino acid at position 130 and
again at 148 (Davis et al. 1986). Amino terminal
extensions are found in Dictyostelium (Marshak et al.
1984) Chlamydomonas (Zimmer et al. 1988) and Schizo-
saccharomyces pombe (Takeda & Yamamoto 1987),
carboxy terminal extensions are seen only in Dictyoste-
lium (Marshak et al. 1984; Goldhagen & Clarke 1986)
and Chlamydomonas (Zimmer et al. 1988). The avail-
able sequence for Dictyostelium is a combination of
incomplete protein and DNA sequences. The
sequence for Chlamydomonas calmodulin is from the
complete DNA sequence and the same is true for S.
pombe. ‘Z° occurs in some of the early protein
sequences, namely in spinach (Lukas et a/. 1984) and
in  Dictyostelium (Marshak et al. 1984). We have
completed the sequences of Arb A and Arb B based on
the discussion in the paper reporting their existence
(Hardy et al. 1988). We have not included any of the
human and rat pseudogenes in these analyses or
squidulin or the calmodulin-like sequence from Caenor-
habditis elegans.

The programme ‘Protpars’ from the ‘Phylip’ pack-
age of programmes (version 2.8), provided by Dr ]J.
Felsenstein, was used to infer evolutionary relation-
ships.

(b) Molecular modelling studies

To investigate the nature of the interaction of
calmodulin antagonists with the hydrophobic pockets
of Ca?*-activated calmodulin we have performed
molecular modelling studies based on the structural
data of Babu et al. (1988). From the amino acid
sequence alignment (table 1) we judged that the
tertiary structure of calmodulin is conserved. It has
been observed that during the process of evolution,
tertiary structure is more conserved than the amino
acid sequence and the number of stable folds is limited
to each level in the hierarchy of protein structures
(Rossmann et al. 1974; Phillips et al. 1983; Sali &
Blundell 1990). Thus, in the absence of three-dimen-
sional structures for P. falciparum, Trypanosoma brucei
and S. cerevisiae calmodulins, the high degree of
sequence identity enabled us to predict the structures
with confidence, based on the refined three-dimen-
sional structure of mammalian calmodulin (Babu et
al. 1988). The methodologies used for modelling the
three structures were similar. Using the ‘maximum
overlap approach’ (Mop) of Hermans & McQueen
(1974), the mammalian calmodulin was modified to
accommodate the three calmodulin amino acid
sequences by changing the side chains that differ in
the three molecules and by rearranging the main
chain to accommodate deletions. Conserved side
chains were placed in the interior of the molecule,
and care was taken to orient changed side chains so
that they occupied nearly the same positions of the
corresponding side chains in mammalian calmodulin.
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The first four and the last amino acid residues are
poorly defined in the mammalian calmodulin crystal
structure and were not included in this study. In S.
cerevisiae there is a deletion at position 130 (Davis et al.
1986) which occurs in the fourth Ca?*-binding site
of mammalian and other known calmodulins. This
region was modelled using a database search as
described by Jones & Thirup (1986), based on the
fragment matching method used in modelling homo-
logous proteins. The possible helix-loop-helix struc-
tures for this region in the model structure for S.
cerevisiae were individually examined on the graphics
machine. The loop in this part of the molecule is
similar to the corresponding loop in mammalian
calmodulin. The resultant model structures were
subjected to energy minimization in vacuo using
GROMOS library of computer programmes (Aqvist ef
al. 1985) with the standard potentials as described by
van Gunsteren & Karplus (1982). All bond lengths
and bond angles were optimized to fit the potentials
used in the energy minimization. Electrostatic charges,
including the calcium ion contributions, were not
considered in the calculations. Calcium ligand dis-
tances within the four loops were idealized. Conver-
gence was achieved after 750 cycles of conjugate
gradient energy minimization in steps of 0.01 Kcal
mol 1. All the three model structures were reexamined
on the graphics machine.

Certain pharmacological reagents prevent the
Ca’*-dependent activation of enzymes by calmodulin,
these include two antipsychotics, trifluoperazine
(TFP) and chlorpromazine (CPZ). The classical fea-
tures of this class of drugs include two or three
aromatic rings, with a positively charged side chain
amino group which is at least four atoms away from
the ring structure (Weiss ¢t al. 1982). Two antimala-
rials, quinacrine and chloroquine have similar struc-
tural features. Consequently, we modelled these four
drugs with calmodulin from P. falciparum. The drug
molecules were chosen from the Cambridge database
and fitted into the hydrophobic clefts of the calmodu-
lin molecule. This exercise was based on the available
knowledge of previous drug binding studies using: (i)
a predicted model of TFP bound calmodulin derived
from troponin C (Strynadka & James 1986); and (ii)
the preliminary structure of TFP-calmodulin complex
(Babu et al. 1988).

All the model building was done using the com-
puter graphics programme package FRODO (Jones
1978, 1985) as implemented on the Evans and
Sutherland PS390 colour graphics by J. W. Pflugrath,
M. Saper, R. Hubbard and P. R. Evans connected to
a Vax 3100 computer system.

(¢) Parasites

The clone T9/96 of P. falciparum, was grown in vitro
using the method described by Trager & Jensen
(1976). Synchrony was maintained by sorbitol lysis
(Lambros & Vanderberg 1979) and Percoll layering
(Howard & Reese 1984).

(d) Drugs
Calmodulin antagonists, N-(4-aminobutyl)-2-naph-
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thalene-sulphonamide (W12) and N-(4-aminobutyl)-
5-chloro-2-naphthalene-sulphonamide (W13), were
purchased from Seikagaku Kogyo Co. Ltd, Japan.
Trifluoperazine (10-[3-(4-methyl-1-piperazinyl)pro-
pyl]-2-trifluoromethyl-phenothiazine)dihydrochloride
(TFP), chlorpromazine (CPZ) (2-chloro-10-[3-di-
methyl amino propyl| phenothiazine) hydrochloride
and verapamil were purchased from Sigma Ltd.,
Poole, Dorset. All the drugs were initially dissolved in
distilled water, sterilized by passage through a
0.22 pm Millex filter and diluted in culture medium
when required. Stock solutions were stored aliquoted

at —20°C.
(e) In vitro assays

An erythrocyte suspension of parasitized cells (109,
by volume) was dispensed in triplicate into the wells of
microtitre plates. An equal volume of complete
medium was added containing the various drugs at
twice the required final concentration. Culture
medium alone was added to the controls. The viability
of the cultures was assessed by morphology. This
procedure was found to be more suitable than
measurements of uptake of nucleic acid precursor as
we were able to follow any changes in morphology
both of the parasite and of the red cell. Routinely 2000
red blood cells were assessed for the presence of
parasites. The 509, inhibitory concentrations (icsp)
were obtained by graphic interpolation of concentra-
tion-response curves. All experiments were repeated
at least once.

Experiments were designed to see whether the
calmodulin antagonists were mediating their effects
through the host red-cell or parasite calmodulin and
at what stage in the erythrocytic life-cycle of the
parasite. Parasite maturation was assessed indirectly
using an invasion assay as follows: ring-stage parasites
were incubated for 24 h in the presence of the different
inhibitors prior to washing three times in RPMI-1640
and being returned to culture for a further 36 h. For
the red-cell pretreatment assays, red blood cells were
incubated at 37°C in the presence of complete
medium containing inhibitors, prior to being washed
three times in RPMI-1640 and used as targets in a
parasite invasion assay.

3. RESULTS

(a) Comparison of amino acid sequences of
different calmodulins

A multiple sequence alignment of calmodulin amino
acid sequences is shown in table 1. The levels of
sequence identity are given in table 2. The highest
homology exists among the vertebrates. Lower eukar-
yotes, which include the fungi and the protozoa, show
much lower levels of homology. The most diverse
sequences appear to be those for the two yeasts S.
cerevisiae (Davis et al. 1986) and S. pombe (Takeda &
Yamamoto 1987), and Candida albicans (Saporito &
Sypherd 1991). Such differences in levels of homology,
may reflect the diversity of calmodulin function in the
vertebrates.
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Saccharomyces cerevisiae

Candida albicans

Schizosaccharomyces pombe
Chlamydomonas reinhardtii
l_— Dicteostelium discoideum

Electric eel

Human, Rat, Rabbit, Cow, Fish, Arbacia A, Xenopus laevis,Chicken
Arbacia B
Drosophila melanogaster, locust

Sea squirt
Aplysia californica, Sea scallop

Renilla reniformis, Metridium senile

Achlya klebsiana

[—Asperglllus nidulans
Lpieurotus cornucopiae

Euglena gracilis

Trypanosoma brucei
Trypanosoma cruzi
Tomato

Potato

|

Spinach

Barley
Alfalfa
Wheat

Plasmodium falciparum
Paramecium tetraurelia

A

Tetrahymena pyriformis

Figure 1. One of the phenograms illustrating the relationships between the different calmodulin sequences. The
references for these sequences are given in the footnote to table 1. The order for the plants (spinach, wheat, barley
and alfalfa) occurs in 359, (eight out of 23) of the trees, the next most preferred order occurs in four out of 23. The
remaining permutations occur in only one or two trees. The order presented in this phenogram for the fungi occurs
in 61%, (14 out of 23) of the trees, the variation in order involving Achlya, Pleurotus and Aspergillus, and whether the
branch order is as shown or reversed. In one of the other trees all the fungi were grouped at the top of the
phenogram, before the branch with the animal and plant kingdoms. There is a little variation in the preferred
branching among the invertebrates, caused by the sequences for Drosophila and Arbacia B. The preferred order is
shown in this figure and occurs in 17 out of 23 (749,) of the trees.

Across species, there is amino acid sequence conser- inclusion of this sequence the degree of sequence

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

vation and a total of 50 out of 148 residues are
invariant (table 1). Of the amino acid changes, 33
occur only in a single organism, and of these 14 are
specific to S. cerevisiae. This therefore increases the
overall sequence identity to 83 out of 148. Where
DNA sequence is known, codon usage is characteristic
of the given organism.

X-ray crystallographic studies of Babu et al. (1988)
show that mammalian calmodulin has four domains.
Comparison of the various calmodulin sequences
corresponding to domain 1 (residues 1-42), shows that
this is the most conserved, 42.99%,. Domain 3 (residues
76-115) is the next most conserved, 37.5%,; and this is
not surprising as it is believed to have been derived
from domain 1 when there was a ancestral duplication
of the gene for a primordial Ca®*-binding protein
(Watterson et al. 1980). Domains 2 and 4 (residues
43-75 and 116-148 respectively) are less conserved,
33.39, and 18.29, respectively. The drop in homology
in domain 4 is due to the sequence changes found in
C. albicans (Saporito & Sypherd 1991), without the

Phil. Trans. R. Soc. Lond. B (1993)

identity between the different organisms would be
30.39,. The degree of sequence identity in the central
helix (residues 65-92) is 42.99,. Certain sequence
changes appear to be specific to particular classes of
organism, for example cysteine at position 26 in the
plants and aspartate at position 126 in the two yeasts.

(b) Evolutionary relationships

The alignment in table 1 was used to generate an
unrooted phylogenetic tree using the maximum parsi-
mony approach (see Felsenstein 1988), which is based
on the algorithms of Eck & Dayhoff (1966) and Fitch
(1971). Using the sequence for S. cerevisiae as the
outgroup, 23 trees were generated involving 345 steps.
A typical phenogram is shown in figure 1. The overall
features of the trees were similar, the differences were
caused by the preferred order among the plants, some
of the fungi and among the invertebrates. It is difficult
to interpret the significance of such details as this is
dependent upon the quality of the input sequences.
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This approach examines the amino acid sequence
changes that occur between sequences from different
organisms and makes certain that the necessary

fw\’g%\g g% nucleotide changes are consistent with the genetic
N AZ I RS g code. For example, at the amino acid level, P.
2 TR E Zo|§z alciparum shows 89.29%, sequence identity with the
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Figure 2. Stereo picture of P. falciparum calmodulin. Residues 5-147 are included. The
backbone structure is highlighted in orange, the side chains are in pale blue with the
calcium ions in the four binding sites being in dark blue. TFP(red) is located in the two
plausible drug-binding pockets.
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Figure 5. Drug binding in the amino-terminal cleft with the four drugs, chloroquine,
chlorpromazine, quinacrine and trifluoperazine is shown in panels (a—d), respectively.
Drug binding in the carboxy terminal cleft with the four drugs, chloroquine,
chlorpromazine, quinacrine and trifuoperazine is shown in panels (e-h), respectively.
The spheres represent 70% of van der Waal radii. The drugs are in pink and the
hydrophobic pockets of calmodulin are in blue.
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Table 4. Summary of the inhibition studies on P. falciparum
by Ca?* and calmodulin antagonists

assay
red cell

invasion  maturation  pretreatment
antagonists I-1Cs0/ M I-1C50/ UM I-ICs50 /M
W12 125 175 350
W13 15 30.5 51
chlorpromazine 9.2 12.5 55
trifluoperazine 5.4 6.3 45
verapamil 19 19 ND

to see whether these proteins are a suitable new target
for novel antimalarials.

(d) Inhibitor studies with Ca®>* calmodulin
inhibitors

We have assessed the effects of two naphthalene
sulphonamides (W12 and W13), two phenothiazines
(CPZ and TFP), and verapamil on parasite invasion
and maturation. The results are summarized in table
4. As expected from these and other data (Scheibel e
al. 1987; Matsumoto et al. 1987; Scheibel et al. 1989;
Tanabe et al. 1989) using another pair of naphthalene
sulphonamides (W5 and W?7) the parasite is more
sensitive to the chlorinated homologues W7 and W13.
Both the phenothiazines and the naphthalene sulpho-
namides were more effective at inhibiting parasite
invasion than schizont maturation, whereas verapa-
mil, a Ca?*-channel blocker, was not selective. Higher
concentrations of both W12 and W13 and the two
phenothiazines were required to perturb parasite
invasion when the drugs were used to pretreat the red
cells. This suggests that host calmodulin is involved in
parasite invasion but has a lower sensitivity to the
drugs. These concentrations are in agreement with
those described for the regulation of red cell shape
(Nelson et al. 1983). These and other data (Kristian-
sen & Jepsen 1985; Geary et al. 1986; Scheibel et al.
1987; Matsumoto el al. 1987; Scheibel et al. 1989;
Tanabe et al. 1989) suggest that the naphthalene
sulphonamides and the phenothiazines interact with
parasite rather than host calmodulin. However, it
must be noted that some of the effects of chlorproma-
zine, trifluoperazine and verapamil may be indepen-
dent of their action directly or indirectly on parasite
calmodulin as at high concentrations these compounds
cause hemolysis. Further experiments examining the
speed at which these agents perturb schizogony sug-
gest that this occurs within 30 min of adding these
compounds to schizont infected red cells (Data not
shown).

These results encouraged us to pursue our hypothe-
sis that the increased sensitivity of P. falciparum to
known calmodulin antagonists might be a conse-
quence of sequence changes in the hydrophobic clefts.

(e) Model building

Before we could examine the nature of the interac-
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tion of various calmodulin antagonists with the hydro-
phobic pockets of Ca%*-activated calmodulin, it was
necessary to build complete atomic models for these
proteins from P. falciparum, T. brucer and S. cerevisiae,
using the known mammalian structure (Babu et al.
1988). A stereo picture of the P. falciparum calmodulin
molecule is shown in figure 2. The overall length of
the molecule is approximately 63A. In general, the
molecule is helical and consists of two similar lobes
connected by a long, flexible central helix, a confor-
mation which is unique and found only in a closely
related protein troponin C (Herzberg & James, 1985).
It is evident from the crystal structure of mammalian
calmodulin (Babu ef al. 1988) that the central helix is
involved in interacting with target enzymes. The
significant differences in the three model structures are
highlighted below:

(1) Overall conformation

There are four amino acid changes in the central
helix of P. falciparum, and T. brucei and twelve in S.
cerevisiae. Nevertheless, a cluster of charged residues is
maintained in this helix (table I).

(ii) Calcium coordination

The four Ca?*-binding loops in the calmodulin
molecule (figure 3), two in each lobe, exhibit a typical
EF-hand (helix-loop-helix) conformation and are
located on the surface of the molecule. All these
binding sites follow sevenfold coordination, a general
Ca®* coordination number as observed in several
Ca®* complexes. There is a significant difference in
the S. cerevisiae fourth Ca?*-binding site, where there is
a deletion of an amino acid residue at position 130
(table 1).

(iii) Hydrophobic surfaces

Ca?*-activated calmodulin, in general, contains a
large hydrophobic cleft in each lobe (figure 2). These
clefts face towards each other and are located on
opposite sides of the central helix. Sequence changes
in the two hydrophobic clefts are summarized in table
3. More sequence variation is found in the carboxy
terminal cleft. The deletion of residue 130 affects the
size of the carboxy terminal cleft in S. cerevisiae.

(iv) Active lysine

It is known that lysine 115 is trimethylated in most
calmodulins by an irreversible enzymatic reaction.
This residue is conserved in all calmodulins except S.
pombe where lysine has been replaced by an arginine
(table 1). Of all the lysines, lysine 115 is the most
solvent accessible.

(v) Drug binding

We have modelled the nature of the interaction of
calmodulin antagonists with the hydrophobic pockets
of Ca?*-activated calmodulin from P. falciparum.
The drugs chosen included two known antimalarials,
quinacrine (Courseille e al. 1973a) and chloroquine
(Courseille et al. 1973b), as well as two known
calmodulin antagonists, chlorpromazine (McDowell
1969) and trifluoperazine (McDowell 1980) (figure 4).
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Figure 3. Stereo drawings of the four Ca?*-binding loops in calmodulin from P. falciparum (a—d) and the fourth
Ca?*-binding loop of calmodulin from S. cerevisiae (e).

That the hydrophobic clefts in either half of the
calmodulin molecule are the sites of interaction with
these drugs is suggested from preliminary crystallo-
graphic results (Babu ez al. 1988) who showed that the
aromatic portion of the drug molecule, trifluopera-
zine, could fit into the hydrophobic pocket with the
positively charged end of the molecule extending
towards the central helix (Babu ¢t al. 1988). There are
a number of chemical and spectroscopic studies avail-
able in the literature to support this model (Brzeska et
al. 1983; Vogel et al. 1984; Giedroc et al. 1985). Our
model building studies suggested that it is feasible to
place all four of these drugs into both hydrophobic
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pockets (figure 5a—#). The chlorine and fluorine atoms
of the drug compounds are buried deep within the
pockets and the hydrophobic rings are stacked against
the residues of the hydrophobic cleft. This supports
the observations that drug compounds with halide
atoms are more active (table 4), probably having
increased affinities with calmodulin. Our model build-
ing studies using the four drug molecules and calmo-
dulin from P. falciparum has shown that trifluoperazine
fitted most tightly (—94 kcal mol™!) in the hydro-
phobic pockets in different orientations with respect
to the central helix. Chloroquine fitted least well
(—10 kcal mol™1).
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Figure 4. The chemical structures of the drug compounds chlorpromazine, trifluoperazine, chloroquine and
quinacrine.

4. DISCUSSION

The structures of homologous proteins may be pre-
dicted with some confidence when the structure of one
or more members of the family is known. The advent
of DNA technology has meant that many sequences
are becoming available for families of proteins. Many
proteins belong to relatively few families of protein
structures. Thus it may be possible to derive the three-
dimensional structures of all the members of a family
provided there are one or more experimental struc-
tures available. This could be a more rational way of
comparative model building than predictions based
on primary sequence alone and is true for calmodulin.

The high degree of sequence identity between
calmodulins of different origins has allowed us to
perform molecular modelling studies following this
principle. Our interests have centered on two parasite
proteins, from P. falciparum and T. brucei, as well as
that from S. cerevisiae. We have investigated the
suitability of calmodulin from P. falciparum as a target
for novel antimalarials. In general, the nature of
sequence changes that occur in calmodulin from 7.
brucei are such that our model building observations
for P. falciparum hold true for T. brucer.

It is known that the functional properties of calmo-
dulin are conserved throughout evolution. However,
the amino acid sequence of the S. cerevisiae protein is
the least conserved and has only 609, identity with
vertebrates. There are significant differences in the
ability of calmodulins from S. cerevisiae and vertebrates
to activate target enzymes such as myosin light chain
kinase and cyclic nucleotide phosphodiesterase using
in vitro assays (Luan ef al. 1987). However, using an in
vivo assay where vertebrate calmodulin replaced yeast
calmodulin the two proteins were shown to be func-
tionally interchangeable (Davis & Thorner 1989).
From the model building studies it is clear that
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significant changes have occurred in the central helix,
in the hydrophobic clefts and in particular EF-hand 4.
The deletion of the amino acid at position 130 has
some interesting consequences.

Matsuura et al. (1991) have shown that this domain
is unlikely to bind Ca?* despite the observation that
compensations in the amino acid sequence further on
would make it possible to maintain the seven-fold
coordination without altering the overall structure
(see figure 3). Recent experimental data (Geiser e/ al.
1991) in which yeast strains containing mutant calmo-
dulins in which the Ca®*-binding loops have been
altered, such that the side chains of the first and last
amino acids in the EF-hands can no longer coordinate
Ca%*, are still viable. Furthermore, none of these
mutant proteins changed conformation even in the
presence of high levels of Ca®*

The two parasite proteins (7. brucer and P. falci-
parum) show a high level of sequence identity with
vertebrate calmodulin. Some of the sequence changes
occur in the central helix of the molecule which is
important in maintaining function, other changes
have occurred in the hydrophobic clefts. Significant
sequence changes in the hydrophobic clefts also occur
in S. cerevisiae. Other unicellular fungi also show
considerable amino acid differences, particularly in
the C-terminal cleft.

From our modelling studies examining the interac-
tions of the four drug molecules with calmodulin from
P. falesparum we can conclude that chloroquine fitted
least well, suggesting that calmodulin is not a major
target for this drug. The high degree of amino acid
sequence identity shared by protozoan and mam-
malian calmodulins together with structural similarity
does not provide a basis for differential drug binding.
However, the number of amino acid sequence changes
in the hydrophobic clefts of calmodulins from the
unicellular fungi suggest that these may be a suitable
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target for novel calmodulin antagonists and its seems
likely that these changes might have a role in the
interaction with hydrophobic molecules.

The invasion data presented here do not differ
significantly from those of other workers who used
related drugs W-5 and W-7 (Scheibel et al. 1987,
Matsumoto et al. 1987; Scheibel et al. 1989; Tanabe et
al. 1989). W-12 and W-13 have been thought to be
more potent than these other two naphthalene sulpho-
namides. This class of drugs was believed to be specific
for calmodulin but there is now accumulating evi-
dence (Schatzman et al. 1983) that these drugs
interact with a phospholipid-sensitive calcium-depen-
dent protein kinase. It is therefore likely that it is the
hydrophobic nature of these compounds together with
their three-dimensional structure that gives these
compounds their ability to interact with the hydro-
phobic clefts in calmodulin. This is in agreement with
the general principle that most quaternary structures
exhibit symmetrical properties and involve associa-
tions through complementary surfaces primarily due
to hydrophobic interactions (Wodak et al. 1987).
Recently Meador et al. (1992) have determined the
crystal structure of Ca?* bound calmodulin to a
peptide analogue of the calmodulin-binding region of
chicken smooth muscle myosin light chain kinase at
2.4A resolution. Their results explain that due to the
peptide-protein interactions, the closely associated
domains of the calmodulin molecules form a pseudo-
twofold symmetry and the hydrophobic surfaces on
either side of the central helix come closer and form a
tunnel covering the hydrophobic region of the helical
peptide. The tight association of the peptide in the
tunnel thus makes the complex structure rather
compact in nature. However, we do not anticipate
such a conformational change with small hydrophobic
molecules as discussed above, which has been sup-
ported by preliminary X-ray results (Babu et al. 1988).

Comparison of protein sequences allows construc-
tion of a phylogenetic tree which includes P. falciparum
and differs from that constructed from the nucleic acid
sequences of small subunit ribosomal RNA. Our
phenogram for calmodulin (figure 1) includes 37
amino acid sequences and agrees with the analysis of
Moncrief et al. (1990) which included the 15 calmodu-
lin sequences available at that time. These types of
comparison are difficult to interpret, nevertheless, it is
of interest that in all of the phenograms generated the
protozoan calmodulins seem to be distantly related to
those of the plant kingdom. Recent evidence, of
mitochondrial RNA editing (Simpson & Shaw, 1989)
and extrachromosomal elements related to chloro-
plasts (Wilson et al. 1991), have also suggested a
similar relationship. This could mean that new drugs
based on an understanding of the modes of action of
herbicides may prove rewarding.
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sgure 2. Stereo picture of P. falciparum calmodulin. Residues 5-147 are included. The
ckbone structure 1s highlighted in orange, the side chains are in pale blue with the
lctum 10ns 1n the four binding sites being in dark blue. TFP(red) 1s located in the two
wisible drug-binding pockets.
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igure 5. Drug binding in the amino-terminal cleft with the four drugs, chloroquine,
1lorpromazine, quinacrine and trifluoperazine is shown in panels (a-d), respectively.
srug binding 1n the carboxy terminal cleft with the four drugs, chloroquine,
1lorpromazine, quinacrine and trifuoperazine is shown in panels (e-h), respectively.
he spheres represent 70% of van der Waal radii. The drugs are in pink and the
ydrophobic pockets of calmodulin are in blue.
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